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Computation of All the Amicable Pairs Below 1010 

By H. J. J. te Riele 

Abstract. An efficient exhaustive numerical search method for amicable pairs is .described. 
With the aid of this method all 1427 amicable pairs with smaller member below 1010 have 
been computed, more than 800 pairs being new. This extends previous exhaustive work below 
108 by H. Cohen. In three appendices (contained in the supplements section of this issue), 
various statistics are given, including an ordered list of all the gcd's of the 1427 amicable pairs 
below 1010 (which may be useful in further amicable pair research). Suggested by the 
numerical results, a theorem of Borho and Hoffmann for constructing APs has been extended. 

1. Introduction. Let a(m) denote the sum of all the divisors of m, including 1 and 
m. An amicable pair (AP) is a pair of positive integers (m, n), m < n, such that 
a(m) = a(n) = m + n. We note that m is abundant (since a(m) > 2m) and that n 
is deficient (since a(n) < 2n). The smallest AP is 

(220,284) = (225.11,2271). 
In order to check whether or not a given positive integer m is the smaller member 

of an amicable pair, it seems necessary, at first sight, to compute a(m) and 
n := a(m) - m, to check whether n > m (i.e., whether m is abundant), and, if so, to 
compute a(n) and compare a(m) with u(n). This involves one or two complete 
factorizations, in case m is deficient or abundant, respectively. However, a closer 
look reveals that it is often possible to find out whether a given number m is 
deficient (hence cannot be the smaller member of an AP) without the need to 
factorize it completely. Moreover, once a(m) and n (= a(m) - m) have been 
computed, it is often possible to discover that a(n) # a(m) without the need to 
factorize n completely. 

These considerations have guided the design of an efficient exhaustive numerical 
AP search algorithm, the details of which are given in Section 2. With the aid of this 
algorithm we have extended Cohen's exhaustive list of all 236 APs with smaller 
member below 108 [4] to all 1427 APs with smaller member below 1010. Of these, 
601 have been published earlier [6], [7]. The other 826 seem to be new, and are 
published here for the first time (9 of them have been communicated to the author 
already in 1983 and 1984 by Woods (2), Borho (2) and Lee (5)). Section 3 presents 
details of the computations together with several tables collected from this search. 
Moreover, a result of Borho and Hoffmann for constructing APs is extended, as was 
suggested by the numerical tables. 
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Three appendices to this paper appear in the supplements section of this issue. 
These may also be obtained by writing to the author. 

In Appendix I, we present the complete list of all 1427 APs with smaller member 
below 1010 ordered according to the size of the smaller members of the pairs. 
Appendix II displays the same list with a different ordering, viz., according to the 
various occurring types (defined in Section 3). Finally, Appendix III tabulates all the 
greatest common divisors of the 1427 APs, in increasing order, together with their 
frequencies of occurrence, and, for each gcd g, the rank numbers of all the APs 
(m, n) for which gcd(m, n) = g. 

2. Check Whether a Given m is the Smaller Member of an AP. Let p1 be the ith 

prime, P11 H= n 'k=i Pk, Q11 = Pk/( Pk - 1). We start with the following 
lemma which gives an upper bound for a(m)/m. 

LEMMA 2.1. If m only has prime divisors > pi (i > 1) and if m < Pi j+l (j> 1) 
then a(m)/m < Qij. 

Proof. Since m < Pi + 1 = Pi Pi+ 1 ... Pi+J, and since any prime divisor of m is 
> p1, it follows that m has at most j different prime divisors > pi (otherwise we 

would have m > pipi+ 1. i * +j = Pi1 + 1). This implies that 

____ _ ~pe~l -1 p -p -e ________ 

e~~p HjmP H m Pell., P ( I) PellM P pIm P k-i Pk 

In the algorithm below, this lemma is invoked very frequently. Therefore, we require 
a precomputed table of P- and Q-values, large enough so that the values needed can 
be found quickly by simple table look-ups. 

Now we describe an efficient algorithm to check whether a given positive integer 
m belongs to an AP (m, n) with m < n. This algorithm is based on the observation 
that when, for given y and N, we want to verify one of the relations c(N)/N > y, 
= y, < y, and when the primes 2, 3,..., p have been tried as divisors of N, it may 
be possible 

(i) to detect, with Lemma 2.1, whether a(N)/N < y by using the information that 
the unfactored portion of N only has prime divisors > p, and 

(ii) to detect whether a(N)/N > y by using the factored portion of N. 
In this way, much unnecessary factorization time may be avoided. The price to pay 
for this gain lies in the time needed to consult the P- and Q-tables used in Lemma 
2.1. In the algorithm, the index im,, is the maximum value of i for which Lemma 2.1 
is invoked. In order to restrict this table look-up time, imax should not be chosen too 
large. The optimal value of im,, also depends on the actual implementation of the 
algorithm (cf. Section 3). 

Algorithm to Check Whether m is the Smaller Member of an AP. 
Step 1. (Find out whether m is abundant; in this step, keep m = m1m2 where 

gcd(m1, M2) = 1, mi1 is the factored and M2 is the unfactored portion of m, 
a a(mi1)/mn1; start with mi1 1, M2 :=m, a:= 1.) 

Start factoring m by trial dividing M2 by the primes Pi, P2,... < MY"2 . In case a 
prime power divisor Pe - (e > 1) of M2 has been found, update ml, M2 and a 
(M1 :=in1p1, n2 r/ mrn1, a:= a a(pe1 1)/pe 1). After the trial division with 

Pi-i (whether or not pi-, divides m2): if a < 2 and 4 s< i < ima' check whether m 
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is possibly deficient as follows: by inspecting the P-table find the smallest value of j 
(=:j*) such that m2 < Pi j+1; if aQi j* < 2, then STOP (because, in that case, m is 
deficient: by Lemma 2.1 we have a(m2)/m2 < Qj* so that 

a(m) - a(mM) .a(m2) _ a(m2) < aQ < 2) 
m ml M2 M2 

If a > 2, or i < 4 or i > imax the deficiency check on m is left out. After the 
complete factorization of m (and simultaneous computation of a(m)): if m < a(m) 
- m =: n (i.e., m is abundant), go to Step 2, otherwise STOP. 

End of Step 1 

Step 2. (Given m, a(m) and n = a(m) - m, check whether a(n) = a(m); during 
the factorization of n try to exclude those m for which a(n) # a(m) as early as 
possible by testing whether u(n)/n # /3 where / = a(m)/n; in this step, keep 
n = nin2, where gcd(n1, n2) = 1, n1 is the factored and n2 the unfactored portion 
of n, a:= a(nl)/nl; start with nl:= 1, n2 := n, a:= 1.) 

Start factoring n by trial dividing n2 by the primes Pi, P2'... < nj2. In case a 
prime power divisor p1 1 (e > 1) of n2 has been found, update nj, n2 and a: if the 
updated a satisfies a > B, then STOP (because, in that case, we have 

a(n) u(njl a(n2) > u(nj) a> , (m) 

n nj n2 n n 

so that a(n) * a (m)). After the trial division with pi- (whether or not pi-1 divides 

n2): if 4 < i < imax check whether a(n)/n < / as follows: by inspecting the P-table 
find the smallest value of j (=:j*) such that n2 < P.j+1. If aQi1* < /, then STOP 
(because, in that case, a(n)/n < /: by Lemma 2.1 we have a(n2)/n2 < Q.* so 
that 

o(n) a- (n) Ga(n2) aG(n2) < aQ,<j* < 
n n 1 n2 n2 

If i < 4 or i > ima9 the check on a(n)/n < / is omitted. After the complete 
factorization of n (and simultaneous computation of a( n)): check whether a( n) = 
a(m). If so, (m, n) is an AP. 

End of Step 2 

3. Computing All the APs Below 1010. In order to compute all the APs (m, n) with 
m < n and 108 < m < 1010 (thus extending H. Cohen's computations reported in 
[4]), we distinguish between m- 0 (mod 6) (the easy case), and m # 0 (mod 6) (the 
hard case). 

If m 0 (mod6) and n = a(m) - m is even, then (m, n) cannot be an AP [5]. 
Therefore, n should be odd. In that case, we have [6] m = 2 M2, n = N2, with 
,u E N, M and N being odd. For all the numbers m = 2 M2 with 31M and 
108 I < n< 1010, we computed n := ai(m) - m and checked whether n was a perfect 
square. Not a single such case was found. Computer time was about 6 CPU seconds. 

For all m # 0 (mod 6) with 108 < m < 1010 we used the algorithm of Section 2 to 
find all APs in this range. The optimal choice of imax for our FORTRAN-implemen- 
tation on a CYBER 750 was about 75. This value was chosen to be fixed for the 
whole range. The speed-up factor of our program was about 15, compared with a 
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straightforward program which, given m, computes a(m) and, if n:= a(m) - m > 
m, computes a(n). A slight increase of the speed was obtained as follows. In Step 1, 
in case a prime (power) factor of M2 was found and m1 and a(ml) (among others) 
were updated, it was checked whether both ml and a(ml) were divisible by one of 
the primitive abundant numbers 20 = 225, 28 = 227, 70 = 2.5.7 and 88 = 2311. If 

so, the algorithm was stopped since this implied that also m and a(m), hence also 
n = a(m) - m were divisible by this abundant number, so that both m and n were 
abundant. This is impossible for an AP (m, n). 

The total time to cover the range 108 < m < 1010 was about 1000 (low priority) 
CPU hours, spent in the last seven months of 1984. 

The total number of APs (m, n) found with m < n and 108 < m < 1010 was 
1191. In Appendix I (of the supplements section) all the APs with smaller member 
< 1010 are given (including the 236 APs with smaller member < 108). For each 
pair we list the decimal representation and the prime factorization of the members, a 
rank number, a code (letter plus digit) referring to the discoverer, and the type of the 
pair (defined below). For example, pair #1427 reads as follows: 

1427 9967523980 2E2.257.5.17.37.3083 
R9 42 12890541236 2E2.257.107.117191. 

Table 1 gives the meaning of the codes, and their frequencies of occurrence. 
Extensive information about the sources of the pairs with code LI is given in the 
survey paper [6]. 

There are 1015 pairs with even members and 412 with odd members. The minimal 
and maximal values of m/n are 0.6979 and 0.999858 for the APs # 567 and # 1010, 
respectively. 

Let A(x) be the number of APs (m, n) with m < n and m < x. From the list of 
APs with m < 108, Bratley et al. [3] concluded that for x < 108, A(x) is approxi- 
mately proportional to xl/2/ln(x). In Table 2 we give, for x = k. 109 (1 < k < 10): 
A(x), A(x)ln(x)/x'12, A(x)(ln(x))2/x1/2 and A(x)(ln(x))3/x1/2. From these fig- 
ures we may draw the conclusion that for x < 1010, A(x) is approximately propor- 
tional to xl/2/(ln(x))3. 

TABLE 1 

Status list of the first 1427APs (mr,n), m < n, withim < 101O 

code #APs references and remarks 

Li 508 [6] 
R2 1 [9] (#1056) 
W1 73 sent to the author by D. Woods on June 29, 1982 and published in 

[7] 
R3 19 found by the author with the methods described in [8], and 

published in [7] 
W2 1 sent in by D. Woods on Feb. 16, 1983 (#330) 
R6 1 found by the author in May, 1983 (#1375) 
W3 1 sent in by D. Woods on July 11, 1983 (#1050) 
L2 5 sent in by E. J. Lee in July, 1984 (# #778,860,894,1241,1261) 
B4 2 sent in by W. Borho on Nov. 2, 1984 (# #809,1393) 
R9 816 found by the author during the systematic search described in this 

paper 
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TABLE 2 

Comparison of A (x) with x1/2/(ln(x))', i = 1,2,3 

.x/109 A ( X) A ( x)ln( X)/X1/2 A ( X)(1n( X )) 2/X1/2 A ( x)(1n( X))3/X112 

1 586 0.3840 7.958 164.9 
2 762 0.3649 7.815 167.4 
3 898 0.3578 7.807 170.4 
4 1009 0.3527 7.799 172.4 
5 1100 0.3474 7.759 173.3 
6 1185 0.3444 7.755 174.6 
7 1256 0.3403 7.715 174.9 
8 1317 0.3358 7.656 174.6 
9 1377 0.3327 7.625 174.8 

10 1427 0.3286 7.566 174.2 

We define an AP (m, n), m < n, to be a regular amicable pair of type (i, J)A if 
(m, n) = (gM, gN), where g = gcd(m, n), gcd(g, M) = gcd(g, N) = 1, M and N 
are squarefree, and the numbers of prime factors of M and N are i and j, 
respectively. Other pairs are called irregular or exotic. There are 1082 regular and 
345 irregular APs with smaller member < 1010. It is easy to see that there are no 
regular pairs of type (1, j), j > 1: let g be the gcd of such an AP, so that 
(m, n) = (gp, gN) where p is a prime and gcd(g, p) = gcd(g, N) = 1. We have 
m < n, hence p < N. By definition, a(gp) = a(gN), implying that p + 1 = a(N). 
Since, for any N e N, a(N) > N, this implies that p + 1 > N, a contradiction. We 
note that in this argument N need not be squarefree. 

In Table 3 we give the frequency distribution of the various types among the first 
1082 regular APs. We note that there are relatively few regular APs of type (i, 1), 

> 2, and of type (i, j) with i <j. 
In [7] the total number of known APs with smaller member < 1010 was 601 

(these are the APs belonging to the first four codes in Table 1). Among them were 
104 irregular APs, i.e., 17.3%. Comparing this figure with the 345 irregular APs in 
our complete list of APs with smaller member < 1010, i.e., 24.2%, we see that 
relatively many irregular APs were found in our systematic search. 

In Appendix II (of the supplements section) we present lists of all the 1082 regular 
APs arranged according to their types, together with a list of the 345 exotic APs. 
This appendix may be useful for searches of APs of a special type. 

The regular pairs of type (i, 1), i > 2, play an important role as "mother" pairs in 
methods to generate new APs from given pairs. In [8] a substantial part of the new 
APs found there was constructed from such mother pairs. In [1], Borho and 
Hoffmann have partially generalized the methods from [8] by introducing the 
concept of a breeder: a breeder is a pair of positive integers (a1, a2) such that the 
equations 

al + a2x = a(aj) = a(a2)(X + 1) 
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TABLE 3 

Frequency distribution of the first 1082 regular APs 

of type (i, j), i > 2, j > 1 

1 j = 1 2 3 4 5 row totals 

2 20 67 21 4 0 112 
3 16 271 280 24 0 591 
4 1 78 201 63 2 345 
5 0 6 18 7 3 34 

column 
totals 37 422 520 98 5 1082 

have a positive integer solution x. If x is a prime, then (a,, a2x) is an amicable pair. 

For certain breeders, called "special" breeders, Borho and Hoffmann formulate the 

following 

THEOREM 1 [1]. Let (a,, a2) be a special breeder, i.e., aI = au, a2 = a, with 

gcd(a, u) = 1. Take any factorization of C:= a(u)(u + a(u) - 1) into two different 

factors D1, D2 (C = D1D2). Then, if the numbers si = Di + a(u) - 1, for i = 1, 2, 

and also q = u + SI + 52 are primes not dividing a, then (auq, as1s2) is an amicable 

pair. El 

Regular APs of type (i, 1), i > 2, are of the form (au, ap), p prime, and the 

numbers (au, a) are special breeders which generally produce many APs with the 

above theorem. 
In our list of 1427 APs we found a few APs, e.g., #647 and #955, which 

suggested that the condition gcd(a, u) = 1 in Theorem 1 may be dropped. In fact, 

we have 

THEOREM 2. Let (au, a) be a breeder, i.e., there exists a positive integer x such that 

au + ax = a(au) = a(a)(x + 1). Take any factorization of C:= (x + 1)(x + u) into 

two different factors D1, D2 (C = D1D2). Then, if the numbers si = Di + x, for i = 1, 

2, and also q = u + SI + 52 are primes not dividing a, then (auq, as1s2) is an 

amicable pair. El 

The proof of this theorem is left to the reader. 
If gcd(a, u) = 1, then a(au) = a(a)a(u), so that x = a(u) - 1 and Theorem 2 

reduces to Theorem 1. As an example, AP #955 gives the breeder (au, a) with 

a = 3.5.7.19 and u = 7.29.47.181. Theorem 2 yields 16 new APs with this breeder as 

input. 
It is known [5] that most even APs have a pair sum which is 0 (mod 9). Our 

search proves that indeed Poulet's pair #503: (24331.19.6619,24331.199.661) is the 

smallest exceptional pair. All known exceptional pairs had members 7 (mod 9) 

and a pair sum 5 (mod 9). In our search, we found two even APs with pair sum 

3 (mod 9), viz., the (irregular) pairs: 

#577: 24( 19103.1627 and 874 2219 13237.43.139 
3847.16763 * 41.151.6709. 
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TABLE 4 
The 17 APs among the first 1427, whose pair sum is # 0 (mod 9) 

even members odd members 

?503, type (2,2) # 899, type (3,2) 
regular ?1031, type (2,2) #1057, type (2,2) 

#1081, type (2,2) #1158, type (3,2) 

irregular # #577, 874 # #7, 38, 78, 113, 256, 
440, 1083, 1175, 1380 

TABLE 5 
All (37) pairs from the first 1427 APs having the same pair sum 

prime decomposition of the pair sum, 
i.e., exponents belonging to the primes 

rank numbers pair sum 2 3 5 7 11 13 17 19 23 29 31 37 

32 35 1296000 7 4 3 
105 109 20528640 9 6 1 1 
137 138 37739520 10 4 1 1 1 
172 173 75479040 11 4 1 1 1 
272 276 321408000 10 4 3 1 
282 286 348364800 13 5 2 1 
350 351 556839360 6 6 1 1 1 1 
347 355 579156480 9 5 1 2 1 
373 375 638668800 12 4 2 1 1 
368 377 661893120 12 5 1 1 1 
395 399 761177088 10 5 1 1 1 
411 415 796340160 6 5 1 2 1 1 
427 433 883872000 8 4 3 1 1 
462 476 1181174400 7 5 2 2 1 
486 491 1282417920 8 5 1 1 1 1 
574 582 2068416000 9 5 3 1 1 
626 630 2395008000 10 5 3 1 1 
653 665 2682408960 12 5 1 2 1 
695 697 3155023872 11 4 1 1 1 1 
717 730 3599769600 13 4 2 1 1 
751 753 4049740800 10 6 2 1 1 
798 807 4606156800 13 3 2 2 1 
786 787 4716601344 13 2 1 1 1 1 
824 840 5094835200 10 7 2 1 1 
940 941 6824563200 9 3 2 2 1 1 
926 952 6897623040 13 7 1 1 1 
997 998 7925299200 11 5 2 2 1 

1012 1019 8273664000 11 5 3 1 1 
1069 1097 10027929600 12 5 2 1 1 
1124 1142 11195712000 9 3 3 1 1 1 
1147 1150 11416204800 9 4 2 1 2 1 
1143 1181 12098211840 12 5 1 1 1 1 
1232 1233 13473008640 10 5 1 2 1 1 
1254 1265 14341017600 12 4 2 1 1 1 
1249 1255 14478912000 9 5 3 2 1 
1272 1278 15058068480 10 5 1 2 1 1 
1410 1425 19926466560 14 5 1 1 1 1 
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These are the first two examples of APs of the form described in [5, Theorem I, case 
(b)] (also cf. the remarks immediately following Table I in [5]). Table 4 gives the 
rank numbers of the 17 APs with smaller member < 10? whose pair sum is # 0 
(mod 9), divided into even and odd pairs, and regular and irregular pairs. 

Another question, suggested by Professor C. Pomerance, is whether pairs, triples, 
quadruples, etc. of APs exist having the same pair sum. Among the first 1427 APs, 
we found 37 such pairs of APs, but no such triples, quadruples, etc. Table 5 gives the 
rank numbers of these pairs of APs, and the prime factorization of their pair sums. 
The pair sums only have prime divisors < 37. In 30 of the 37 cases at least one 
member of the pair was found during the exhaustive search described in the present 
paper. 

In Appendix III (of the supplements section) we tabulate all the greatest common 
divisors of the first 1427 APs, ordered according to their size, with frequencies, and 
with the rank numbers of all the APs corresponding to a given gcd. This might be 
useful in further searches for special APs, and in searches for so-called isotopic APs 
(cf., [6, p. 83]). For example, new APs, isotopic with APs from the list of 1427 APs, 
are obtained by replacing the common factor 335 in # #882 and 1087 by 327.13, by 
replacing the common factor 3353 in #1205 by 325231, and by replacing the 
common factor 335231 in # #717 and 1228 by 365.23.137.547.1093, and by 
3105.23.107.3851. 

In [8], we have presented methods to find new APs from known APs. By applying 
these methods to the new APs among the first 1427 APs, we have found 117 new 
APs (with smaller member > 10'?). The new APs were found mainly from mother 
pairs having a relatively simple structure, like those of type (i, 1), i > 1. They will be 
published in a forthcoming report [2], together with many other new amicable pairs. 
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